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Abstract

This paper presents a strain energy density for isotropic hyperelastic materials. The strain energy density is de-

composed into a compressible and incompressible component. The incompressible component is the same as the

generalized Mooney expression while the compressible component is shown to be a function of the volume invariant J
only. The strain energy density proposed is used to investigate problems involving incompressible isotropic materials

such as rubber under homogeneous strain, compressible isotropic materials under high hydrostatic pressure and volume

change under uniaxial tension. Comparison with experimental data is good. The formulation is also used to derive a

strain energy density expression for compressible isotropic neo-Hookean materials. The constitutive relationship for the

second Piola–Kirchhoff stress tensor and its physical counterpart, involves the contravariant Almansi strain tensor. The

stress stretch relationship comprises of a component associated with volume constrained distortion and a hydrostatic

pressure which results in volumetric dilation. An important property of this constitutive relationship is that the

hydrostatic pressure component of the stress vector which is associated with volumetric dilation will have no shear

component on any surface in any configuration. This same property is not true for a neo-Hookean Green�s strain–

second Piola–Kirchhoff stress tensor formulation.
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1. Introduction

This paper is the first of two papers dealing with finite strain elasticity analysis of beams. In an attempt to

review what is appropriate for the non-linear analysis of beams, a general strain energy density for isotropic

hyperelastic materials is first developed. Based on several postulates as to the conditions which must be met

by the strain energy density an expression is proposed consisting of incompressible and compressible
components. The incompressibility component is the ‘‘general’’ Mooney (1940) expression for higher order

elasticity and satisfies the Valanis–Landel hypothesis. The compressibility component of the strain energy

density for an isotropic material is shown to be a function of the volume invariant J only, and is the strain

energy produced by the application of a hydrostatic pressure. The expression proposed is a generalisation
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of the Simo and Pister (1984) proposal for a neo-Hookean material. The compressibility component is

associated with volumetric dilation while the incompressibility component is associated with volume

constant distortion. The compressibility component of the strain energy density leads to a hydrostatic

pressure component of the stress vector which must have no shear component on any surface of the ma-
terial in any configuration. Any shear on any surface will not be a function of the material properties which

produce volumetric dilation. Several examples are detailed involving tests on rubber at large deformations

under homogeneous strain, compressible materials under large hydrostatic pressure and measurements of

volume changes under uniaxial tension.

The strain energy density for a compressible neo-Hookean material is derived which is the same as that

proposed by Simo and Pister (1984). The constitutive law for the second Piola–Kirchhoff stress tensor for a

neo-Hookean material involves the contravariant Almansi strain tensor and the volumetric invariant J . The

basis of many non-linear and stability analyses of structures is a neo-Hookean constitutive relationship
between Green�s strain tensor and its conjugate stress, the second Piola–Kirchhoff stress tensor. This is

somewhat in doubt because of the Engesser/Haringx controversy (see Bazant, 1971; Bazant and Cedolin,

1991; Bazant, 2003; Attard, 2003) and several other reasons detailed below. The strain energy density for a

Hookean Green�s strain tensor–second Piola–Kirchhoff stress tensor formulation would be aI2e þ bIIe where

a and b are material constants and Ie and IIe are the first and second strain invariants. When all the principal

Green�s strains are collapsed to a singularity they all have a value of )1/2 and the strain invariants are both

non-zero. This implies that the strain energy density and the associated stresses required to collapse a

material to a singularity would have a finite value. This seems physically objectionable. In this paper, it is
shown that when a neo-Hookean constitutive relationship between Green�s strain tensor and the second

Piola–Kirchhoff stress tensor is used and the stresses acting on a surface of a deformed body are divided

into components normal and tangential to the surface, the resulting expression for the tangential shear

stress is a function of the material parameters associated with volumetric dilation. This would also seem

objectionable.

Fig. 1 shows a two-dimensional view of a deformed element with stresses on the vertical faces divided

into a normal component and a tangential shear component. It is shown in this paper, that the normal

stress is a function of the normal component of stretch and the volumetric dilation while the shear stress is
only a function of the shear component of stretch. The shear stress taken orthogonal to the normal stress
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Fig. 1. Two-dimensional element.
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should not be a function of the volumetric dilation. The example of simple shear is looked at in some detail

to show the different stresses which result from the proposed constitutive law as compared to those which

result from assuming a neo-Hookean constitutive relationship between Green�s strain tensor and the second

Piola–Kirchhoff stress tensor.
2. Preliminaries––kinematics of a continuum

Consider a continuum of material at rest in an undeformed state. Particles within the continuum can be

thought of as forming natural lines or chains of particles called material lines (Wempner, 1981). If the

material is deformed these chains of particles move in such a way that particles remain on the same material

line, that is material lines always remain intact. A particle within this continuum is denoted by point P with

coordinates xiðh1; h2; h3Þ, i ¼ 1; 2; 3, with respect to a fixed three-dimensional Cartesian coordinate system,

assumed to be a function of general coordinates hi, i ¼ 1; 2; 3. The hi can be viewed as curvilinear or in-

trinsic coordinates along the material lines. The convention due to Einstein is adopted where a repeated
index such as in pivi is used to imply summation. The repeated index is called a dummy variable as it can be

changed to any symbol without altering the meaning of the summation. A bracketed index indicates

suppression of the summation convention, e.g. xðiiÞ.
The position vector R (the bold style R is used to distinguish a vector while vector components will be

written in italics e.g. xi) of the particle P in the undeformed state is given by
R ¼ iixiðh1; h2; h3Þ ð1Þ

where ii are unit Cartesian vectors (refer to Fig. 2). To examine deformations of the continuum, we first

define a differential line element vector ds at particle P in the undeformed state, given by
ds ¼ oR

ohi
dhi ¼ oxj

ohi
ij dhi ¼ x;ji ij dhi ¼ gi dhi ð2Þ
with respect to covariant tangent base vectors gi. The comma notation indicates differentiation with respect

to hi. The tangent base vectors are so-called because they are tangential to the natural material lines. These

base vectors are ‘‘not’’ necessarily unit vectors and may not be dimensionless. The contravariant base
Fig. 2. Undeformed position.
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vectors are normal to the material lines and are sometimes referred to as reciprocal base vectors. The scalar

product of covariant and contravariant base vectors is the kronecker delta dji ,
gi � gj ¼ gj � gi ¼ dji ð3Þ
3. The metric tensor

The square of the length of the differential line element is called the metric and is calculated from:
ds � ds ¼ gi dhi � gj dhj ¼ gij dhi dhj ð4Þ
The term gij is the covariant metric tensor in the undeformed coordinate system. It follows from Eq. (4) that

the metric tensor is symmetric. The determinant of the metric tensor gij is written as
g ¼ detðgijÞ ð5Þ
If the determinant of the metric tensor is strictly positive, the space is called a Riemannian space. The

contravariant metric tensor gij can be derived in a similar fashion. The relationship between the covariant

and contravariant metric tensors is
gijgjk ¼ dik ð6Þ
The covariant and contravariant metric tensors also have the important property (see Green and Zerna,

1968 or Renton, 1987).
og
ogij

þ og
ogji

¼ 2ggij ð7Þ
4. Stretch

Consider a particle P within a continuum that moves to a new position P̂P with the position vector R̂R as

shown in Fig. 3. The new position is assumed to be a function of the coordinates hi and are therefore said to

be convected coordinates (Fl€uugge, 1972). The new position vector is given by
R̂R ¼ Rþ u ð8Þ
in which u are displacements assumed to be smooth and differentiable. A differential line element vector dŝs

at particle P̂P is given by
dŝs ¼ oR̂R

ohi
dhi ¼ Gj

igj dhi ¼ ĝgi dhi ð9Þ
with ĝgi the covariant tangent base vectors, Gi
j the covariant deformation gradient tensor (Fig. 3). The

associated inverse deformation gradient tensor is denoted by G
i
j and satisfies the following:
G
i
kG

k
j ¼ Gi

kG
k
j ¼ dij ð10Þ
The base vectors in the undeformed and deformed state can be related by
ĝgi ¼ G
i
jg
j ĝgi ¼ Gj

igj gi ¼ G
j
i ĝgj gi ¼ Gi

jĝg
j ð11Þ



Fig. 3. Deformed position.
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The differential line element at the particle P , can be visualized as the diagonal of a parallelepiped with

sides corresponding to the vectors g1 dh1, g2 dh2 and g3 dh3. The ratio of the change in lengths of the sides of

this parallelepiped to their initial length as P moves to P̂P , are measures of relative elongations. Consider the

material arc at P corresponding to the vector g1 dh1, after deformation the length of this fibre becomes
jĝg1 dh1j ¼ k1jg1 dh1j ð12Þ
where ki are the relative stretches associated with the ith covariant material arc and are therefore defined by
ki ¼
ffiffiffiffiffiffiffi
ĝgðiiÞ
gðiiÞ

s
ð13Þ
The quantity ki is not a tensor and represents the relative stretch of the material arc g1 dh1. Since a stretch of

‘‘0’’ would indicate a singularity, the stretch must be positive for all deformations.
ki > 0 ð14Þ
If the material lines are orthogonal both in the initial and final configuration of the continuum, the co-

variant and contravariant metric tensor are related to the relative stretches by
ĝgðiiÞ ¼ ðkiÞ2 ĝgðiiÞ ¼ 1

ðkiÞ2
ð15Þ
5. Strain tensor

The square of the length of the differential line element dŝs at particle P̂P is given by
dŝs � dŝs ¼ ĝgi dhi � ĝgj dhj ¼ ĝgi � ĝgj dhi dhj ¼ ĝgij dhi dhj ð16Þ
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where ĝgij is the metric tensor in the deformed coordinate system. The change in length of the square of the

differential line element can be used to characterize the deformation and to define a strain tensor cij,
thus
dŝs � dŝs� ds � ds ¼ ðĝgij � gijÞdhi dhj ¼ 2cij dhi dhj ð17Þ
The components of the strain tensor are not necessarily dimensionless because the initial base vectors are
not unit vectors. The dimensionless counterpart to the strain tensor, the physical Green�s Lagrangian strain

eij is given by
eij ¼
cijffiffiffiffiffiffiffi

gðiiÞ
p ffiffiffiffiffiffiffiffi

gðjjÞ
p ð18Þ
For an initial Cartesian coordinate system, the physical Green�s Lagrangian strain is equal to the strain

tensor, cij.
An alternate definition for a strain tensor can be derived in Eulerian coordinates that is with respect to

coordinates in the deformed state rather than the undeformed. Using the deformation gradient tensor

defined in Eq. (9), the differential line elements dŝs and ds can be written with respect to new coordinates d�hhi

aligned with the initial tangent base vectors. That is
dŝs ¼ ĝgi dhi ¼ gj G
j
i dhi ¼ gj d

�hhj

ds ¼ gi dhi ¼ gj G
j
id
�hhi

ð19Þ
The change in length of the square of the differential line element is then
dŝs � dŝs� ds � ds ¼ ðgij � G
k
i G

l
jgklÞd�hh

id�hhj ¼ 2�ccijd�hh
id�hhj ð20Þ
where �ccij is the Almansi strain tensor. The relationship between the two strain measures is given by
�ccij ¼ G
k
i G

l
jckl ð21Þ
A second Almansi strain tensor can also be defined with respect to covariant coordinates defined by

d�hhi ¼ Gj
i dhj aligned with the contravariant tangent base vectors in the deformed state. The differential line

elements dŝs and ds can be thus written in the form:
dŝs ¼ ĝgi dhi ¼ gi d�hhi ds ¼ gi dhi ¼ ĝgi d�hhi ð22Þ
The change in length of the square of the differential line element is then
dŝs � dŝs� ds � ds ¼ ðgij � ĝgijÞd�hhi d�hhj ¼ 2�ccij d�hhi d�hhj ð23Þ
where �ccij is the contravariant Almansi strain tensor. The contravariant Almansi strain tensor is related to

the Doyle–Ericksen strain measure with m ¼ �2 (refer to Ogden, 1997, p. 119).
6. Invariants

There are many tensor invariants which can be written in terms of the metric tensor in the undeformed

and deformed state, as well as the relative stretches. The most common quoted triad of invariants (Ik, IIk,
IIIk) are:
Ik ¼ gijĝgij ¼ ðkp1Þ2 þ ðkp2Þ2 þ ðkp3Þ2 ¼ ðk1Þ2 þ ðk2Þ2 þ ðk3Þ2 ð24Þ
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IIk ¼ gijĝgijIIIk ¼ 1
2
ðI2k � gkigljĝgkjĝgliÞ ¼ ðkp1kp2Þ2 þ ðkp1kp3Þ2 þ ðkp2kp3Þ2

¼ ðk1k2Þ2 sin2 /̂/12 þ ðk1k3Þ2 sin2 /̂/13 þ ðk2k3Þ2 sin2 /̂/23 ð25Þ

J ¼ ðIIIkÞ1=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðĝgijÞ
detðgijÞ

s
¼

ffiffiffî
gg

pffiffiffi
g

p ¼ kp1kp2kp3

¼ k1k2k3ð1 þ 2 cos /̂/12 cos /̂/13 cos /̂/23 � cos2 /̂/12 � cos2 /̂/13 � cos2 /̂/23Þ
1=2 ð26Þ
where kp1, kp2 and kp3 are the principal stretches, k1, k2 and k3 are the stretches when the initial coordinate

system is Cartesian and /̂/ij are the angles between the ith and jth tangent base vectors in the deformed state.

The invariant Ik represents the sum of the squares of relative ratios of the three distinct sides of the
deformed parallelepiped, IIk the sum of the relative ratios of the squares of the three distinct surface areas

of the deformed parallelepiped and IIIk the relative ratio of the square of the volume of the deformed

parallelepiped.

Another set of invariants which will prove useful later are defined by
L1 ¼ Ik ¼ gijĝgji ¼ ðkp1Þ2 þ ðkp2Þ2 þ ðkp3Þ2

L1 ¼ Ik�1 ¼ gijĝgji ¼
1

ðkp1Þ2
þ 1

ðkp2Þ2
þ 1

ðkp3Þ2
ð27Þ

L2 ¼ gkigljĝgjkĝgil ¼ ðkp1Þ4 þ ðkp2Þ4 þ ðkp3Þ4

L2 ¼ gkigljĝgjkĝgil ¼
1

ðkp1Þ4
þ 1

ðkp2Þ4
þ 1

ðkp3Þ4
ð28Þ

L3 ¼ gmignjgokĝgjmĝgknĝgio ¼ ðkp1Þ6 þ ðkp2Þ6 þ ðkp3Þ6

L3 ¼ gmignjgokĝgjmĝgknĝgio ¼
1

ðkp1Þ6
þ 1

ðkp2Þ6
þ 1

ðkp3Þ6
ð29Þ
These invariants are characterized by having no coupling terms in the principal stretches and only involving

the principal stretches to even powers. In general we can construct invariants Ln and Ln of this form with

principal stretches to any even power 2n such that
Ln ¼ ðkp1Þ2n þ ðkp2Þ2n þ ðkp3Þ2n

Ln ¼ ðkp1Þ�2n þ ðkp2Þ�2n þ ðkp3Þ�2n
ð30Þ
(n is used as an index in the left hand side of the above formulas).
7. Stress tensors

The deformation of the continuum associated with the movement of point P to P̂P is assumed to be caused

by the action of forces consisting of both body forces and forces applied at the boundary surfaces. At the

point P̂P , we can visualize an infinitesimal parallelepiped with sides corresponding to the vectors ĝg1 dh1,

ĝg2 dh2 and ĝg3 dh3. A force vector at P̂P denoted by dF, can be written in the form:
dF ¼ dbFF jĝgj ¼ dF jgj ¼ dbTTi d ÂAi ¼ dTi dAi ¼ dT
i
d�AAi ð31Þ
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with dbFF j and dF j being the contravariant force vector components with respect to base vectors in the

deformed and undeformed configuration, respectively, dbTTi, dT
i
and dTi are stress vectors acting on the

faces of the infinitesimal parallelepiped at point P̂P with respect to base vectors in the deformed and un-

deformed configuration, and d ÂAi, dAi and d�AAi are the area vectors components defined by
Table
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1ij ¼ sij

ffiffiffiffiffiffiffiffi
ĝgðjjÞ
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ĝgðjjÞ
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gðjjÞ

p ffiffiffiffiffiffiffi
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Common stress tensors: (a) Eulerian stress tensor, (b) second Piola–Kirchhoff stress tensor, (c) Cauchy stress tensor and (d) first

Kirchhoff stress tensor.
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where dÂA and dA are area vectors in the deformed and undeformed state, respectively (note: d ÂAi ¼ J dAi
and d�AAi ¼ G

j
i d ÂAj).

The force vector components can be equilibrated by various systems of stresses referred to base vectors

either in the deformed or undeformed body. Some of the common stress tensors are defined by
dF ¼ sijĝgj d ÂAi ¼ pijĝgj dAi ¼ tijgj dAi ¼ rijgj d�AAi ð33Þ
where sij is the Eulerian stress tensor, pij is the second Piola–Kirchhoff stress tensor, tij is the first Piola–

Kirchhoff stress tensor and rij is the Cauchy stress tensor. The Eulerain and the second Piola–Kirchhoff

stress tensors are referred to oblique axes that are aligned with the tangent base vectors ĝgj at P̂P in the

deformed state. Both the Cauchy stress tensor and the first Piola–Kirchhoff stress tensor are aligned with

the directions of the initial tangent base vectors in the undeformed state. The Eulerian stress tensor, the

second Piola–Kirchhoff stress tensor and the Cauchy stress tensor are all symmetric. The stress tensors are

related by
sijJ ¼ pij rij ¼ Gi
mG

j
ns

mn tij ¼ pirGj
r ð34Þ
The stress tensors do not necessarily have units of force per unit area and physical counterparts can be
derived and are listed in Table 1. Fig. 4 shows a two-dimensional representation of the common stress

tensors.
8. Virtual work and conjugate deformations

In this section we will derive the part of the virtual work associated with the work of the stresses under a

variation of the displacement field. As discussed in Renton (1987), the variation of work of a continuum
associated with a variation in the displacement field, is the scalar product between the variation of the

displacements between opposite faces of the deformed parallelepiped and the associated forces. That is
dðdW Þ ¼ dbTTi d ÂAðiÞ � dĝgi dhðiÞ ¼ dbTTi � dĝgi dbVV ¼ dTi � dĝgi dV ð35Þ
No restrictions in terms of boundary or continuity conditions will be placed on the variation of the dis-

placements. Traditionally the virtual work equation is derived by constructing the dot product of the

equilibrium equations with a variation in the displacement vector and integrating over the volume. This is a

much more involved procedure which results in the same equations. The virtual work equations are a
statement of equilibrium and can be used to assess conjugate pairs of stress and strain or deformation

measures. In terms of the Eulerian stress tensor we can write:
dðdW Þ ¼ dbTTi � dĝgi dbVV ¼ sijĝgj � dĝgi dbVV ð36Þ
Using the symmetry condition for the Eulerian stress tensor, the above equation can be rewritten as
dðdW Þ ¼ 1
2
sij dðĝgj � ĝgiÞdbVV ¼ sij dcij dbVV ð37Þ
The Eulerian stress tensor is conjugate to the strain tensor cij. Here the variation of the strain tensor is

subjected to the same continuity and boundary conditions as sijĝgj. Substituting the relationship between the

Eulerian stress tensor and the physical counterpart (also sometimes referred to as the ‘‘true stress’’, see

Treloar, 1975), Eq. (37) becomes:
dðdW Þ ¼ 1ij
ffiffiffiffiffiffiffi
ĝgðiiÞ

p !
ĝgjffiffiffiffiffiffiffiffi
ĝgðjjÞ

p � dĝgi dbVV ð38Þ
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Recall the definition for the relative stretch:
kðiÞ ¼
ffiffiffiffiffiffiffi
ĝgðiiÞ

pffiffiffiffiffiffiffi
gðiiÞ

p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝgi � ĝgðiÞ

q
ffiffiffiffiffiffiffi
gðiiÞ

p ð39Þ
Taking the first variation of the relative stretch yields:
dkðiÞ ¼
ĝgi � dĝgðiÞffiffiffiffiffiffiffi
ĝgðiiÞ

p ffiffiffiffiffiffiffi
gðiiÞ

p ð40Þ
If we restrict our attention to principal Eulerian physical stresses which align with the directions of prin-

cipal stretches then using the above and the fact that for the principal stretch direction
ffiffiffiffiffiffiffi
ĝgðiiÞ

p
¼ 1=kpi we can

write:
dðdW Þ ¼ 1iðiÞp

dkpi
kpðiÞ

dbVV ¼ 1iðiÞp d lnðkpiÞdbVV ð41Þ
We find that the principal Eulerian physical stresses are conjugate to the natural log of the principal stretch
when the principal stress and stretch directions are aligned.

Since the Cauchy stress tensor and the Almansi strain tensor are both coordinate transformations of the

Eulerian stress and strain tensor, respectively, we have
dðdW Þ ¼ dT
i
d�AAðiÞ � dgi d�hhðiÞ ¼ rijgj � dgi dbVV ¼ rij dð�ccijÞdbVV ð42Þ
The variation has been taken with respect to the initial tangent base vectors that is

dĝgi dhi ¼ dgjG
j
i dhi ¼ dgi d�hh

i. The Cauchy stress tensor is conjugate to the Almansi strain tensor. The

variation in work for the Cauchy stress tensor can also be written in the form:
dðdW Þ ¼ 1
2
G
i
mG

j
nr

mn � dĝgij dbVV ð43Þ
For the variation in work associated with the second Piola–Kirchhoff stress tensor we have
dðdW Þ ¼ dTi � dĝgi dV ¼ 1
2
pijdðĝgj � ĝgiÞdV ¼ pijdcij dV ð44Þ
The second Piola–Kirchhoff stress tensor like the Eulerian stress tensor is also conjugate to the strain tensor

cij. This is because the second Piola–Kirchhoff stress tensor is equal to the Eulerian stress tensor scaled by

the invariant J . Substituting the relationship between the second Piola–Kirchhoff stress tensor and the

physical counterpart, Eq. (44) becomes:
dðdW Þ ¼ sij
ffiffiffiffiffiffiffi
gðiiÞ

p� 	 ĝgjffiffiffiffiffiffiffiffi
ĝgðjjÞ

p � dĝgi dV ð45Þ
As with the physical Eulerian stresses, let us restrict our attention to a state of principal stresses. In this

case, the associated stretches do not have to be principal. Using Eq. (13), Eq. (45) becomes:
dðdW Þ ¼ siðiÞp dki dV ð46Þ
The principal Lagrangian physical stresses are conjugate to their associated stretches. When the stretches
are also principal then we have the following:
dðdW Þ ¼ siðiÞp dkpi dV ð47Þ
For the variation in work associated with the first Piola–Kirchhoff stress tensor we have
dðdW Þ ¼ dTi dAðiÞ � dĝgi dhðiÞ ¼ tijgj � dĝgi dV ¼ tijdðgj � ĝgiÞdV ð48Þ
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The first Piola–Kirchhoff stress tensor is conjugate to the deformation measure gj � ĝgi which represents the

dot product of the tangent base vectors with the initial tangent base vectors. Substituting the relationship

between the first Piola–Kirchhoff stress tensor and its physical counterpart, results in
dðdW Þ ¼ ðf ij
ffiffiffiffiffiffiffi
gðiiÞ

p
Þ

gjffiffiffiffiffiffiffiffi
gðjjÞ

p � dĝgi dV ð49Þ
For an initial Cartesian coordinate system, the first Piola–Kirchhoff stress tensor is equal to its physical

counterpart and conjugate to the projections of the associated tangent base vectors onto the initial tangent

base vectors.
9. Isotropic hyperelastic strain energy density

The strain energy density dU with respect to the initial volume is related to the variation in work by the

equation:
dðdUÞdV ¼ dðdW Þ ¼ dTi � dĝgi dV ð50Þ

For a hyperelastic material, the stress tensors can be derived from the strain energy and we can therefore

conclude from Eqs. (50), (37), and (34) the following:
pij ¼ sijJ ¼ 2
odU
oĝgij

Jrij ¼ 2Gi
mG

j
n

odU
oĝgmn

tij ¼ 2Gj
k

odU
oĝgik

ð51Þ
and for the principal physical Lagrangian and Eulerian stresses
sðiiÞp ¼ odU
okpi

1ðiiÞp ¼ kpðiÞ
J

odU
okpi

ð52Þ
Ogden (1997) and Treloar (1975) present a detailed discussion about the restrictions on the form of

the strain energy density. Here we make several postulates as to conditions to which the strain en-

ergy density must hold and use this to propose the form of the strain energy density. These postulates

include:
1. The strain energy density must be non-negative for all deformations.

2. The strain energy density must be invariant under coordinate transformation.

3. The strain energy must be a function of either the stretch or strain invariants and because of isotropy

be symmetrical with respect to the principal stretches kp1, kp2 and kp3.
4. The strain energy density must have a zero value at the undeformed state ðkp1 ¼ 1, kp2 ¼ 1 and

kp3 ¼ 1Þ.
5. The strain energy density must be a minimum at the undeformed state. This guarantees that the ma-

terial is stress free at the undeformed state. Hence
odU
okpi


 �
undeformed state

¼ 0 i ¼ 1; 2; 3 ð53Þ

o2 dU

ok2
pi

 !
undeformed state

> 0 i ¼ 1; 2; 3 ð54Þ
6. The strain energy density must approach positive infinity at a singularity ðkp1 ¼ 0 or kp2 ¼ 0 or

kp3 ¼ 0) and for very large deformations ðkp1 ¼ 1 or kp2 ¼ 1 or kp3 ¼ 1). Stresses, on the other hand,
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should approach negative infinity at a singularity and positive infinity for very large deformations. This

has some experimental confirmation from tests on rubber in compression and tension.

7. The strain energy density is assumed to be decomposed into two components, one dUincomp associated

with incompressibility or the strain energy density under constrained volume change or volume constant
distortion. This component therefore involves no coupling of the principal stretches hence because of

postulate 3, must be a linear function of the general invariants Ln and Ln. This would also satisfy pos-

tulate 6 since the invariants Ln and Ln contain even powers of the principal stretches and the reciprocals

of the principal stretches. Therefore
dU
incomp ¼
Xr
n¼1

An
2n

ðLn � 3Þ þ Bn
2n

ðLn � 3ÞdV

¼
Xr
n¼1

An
2n

½ðkp1Þ2n þ ðkp2Þ2n þ ðkp3Þ2n � 3� þ Bn
2n

½ðkp1Þ�2n þ ðkp2Þ�2n þ ðkp3Þ�2n � 3�dV
ð55Þ
where An and Bn are material constants, and r is the termination point of the summation. The expression

proposed above for dUincomp is the same as the general expression presented by Mooney (1940) for in-

compressible isotropic materials and was based on the assumption that the traction in simple shear is an

analytical function of the shear. The expression proposed above for dUincomp also satisfies the Valanis–
Landel hypothesis for the strain energy density for incompressible isotropic materials. Their hypothesis

stated that the strain energy density for incompressible isotropic materials should be capable of repre-

sentation as the sum of three separate but identical functions of each of the individual principal stretches

(see Ogden, 1997; Treloar, 1975). The Mooney constants would correspond to A1 and B1.

The other component of the strain energy density dUcomp is associated with the compressibility or specific

volume change as referred to in Freudenthal (1966). Because of isotropy dUcomp must be a function of the

volumetric dilation through the invariant J . Hence
dU ¼ dUincompðLn; LnÞ þ dUcompðJÞ ð56Þ
8. The compressibility component of the strain energy density is further split into two terms of the form

dUcompðJÞ ¼ UðJÞ � ð
Pr

n¼1 An � BnÞ ln J . The logarithmic term is needed (provided An 6¼ Bn) so that, the

material is stress free at the undeformed state. This logarithm term is associated with a hydrostatic pres-
sure needed to maintain the stress free state at the undeformed configuration.

9. In agreement with postulate 6 and as discussed in Simo and Pister (1984), the strain energy density

component dUcompðJÞ should approach infinity at both a singularity J ! 0 and infinite volume change

J ! 1. Simo and Pister (1984) proposed dUcompðJÞ ¼ 1
2
Kðln JÞ2 � G ln J for neo-Hookean isotropic

elasticity as one possibility, where G is the shear modulus and K the Lam�ee constant. Other forms for

dUcompðJÞ are discussed in Cescotto and Fonder (1979), H€aaggblad and Sundberg (1983), Brink and Stein

(1996) and R€uuter and Stein (2000).

Ehlers and Eipper (1998) who examined the lateral strain under uniaxial loading observed that problems
(unphysical results) arise from elasticity laws that proceed from an additive split of the strain energy into

pure isochoric and pure volumetric parts. Plots of numerically obtained longitudinal strain versus lateral

strain showed unrealistic results for longitudinal strains approaching )1 (J ! 0). The Simo and Pister

(1984) proposal investigated by Ehlers and Eipper (1998) did not exhibit unrealistic results because of the

logarithmic squared term 1=2Kðln JÞ2.
As a consequence of postulate 7, it can be shown that for an isotropic material the tangential component

of the stress vector is not a function of volumetric dilation. Any volumetric dilation only influences the

normal component of the stress vectors. To see this, consider a stress vector dTi acting on the ith surface of
the deformed parallelepiped. The stress vector can be split into a normal component and a tangential or
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Fig. 5. Shear and normal components of the stress vector.
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shear component acting within the plane of the surface. This is depicted in Fig. 5. The projection of the

stress vector onto the surface on which it acts is represented by
dTi � ĝgk ¼ pijĝgjk ¼ 2
odUincompðLn; LnÞ

oĝgij

 
þ odUcompðJÞ

oĝgij

!
� ĝgjk ði 6¼ kÞ ð57Þ
The portion due to the compressibility component of the strain energy density is then
2
odUcompðJÞ

oĝgij
� ĝgjk ði 6¼ kÞ ð58Þ
Because dUcomp is a function of J only, Eq. (58) must be zero, since from Eq. (7) we have
2
odUcompðJÞ

oĝgij
� ĝgjk ¼

odUcompðJÞ
oJ

J ĝgij � ĝgjk ¼
odUcompðJÞ

oJ
Jdik ¼ 0 ði 6¼ kÞ ð59Þ
This is just a statement of the fact that a hydrostatic pressure will only produce normal stresses on any

surface in the deformed configuration. A hydrostatic pressure will not produce shear on any surface of the

deformed parallelepiped irrespective of the coordinate configuration.

Based on all the postulates the following strain energy density is proposed for isotropic higher order

elasticity:
dU ¼ dUincomp þ dUcomp

dUincomp ¼
Xr
n¼1

An
2n

ðLn � 3Þ þ Bn
2n

ðLn � 3ÞdV

¼
Xr
n¼1

An
2n

½ðkp1Þ2n þ ðkp2Þ2n þ ðkp3Þ2n � 3� þ Bn
2n

½ðkp1Þ�2n þ ðkp2Þ�2n þ ðkp3Þ�2n � 3�dV

dUcomp ¼
Xs
n¼1

Cn

2n
ðln JÞ2n �

Xr
n¼1

An

 
� Bn

!
ln J dV

ð60Þ
where Cn are material constants, and s is a termination point. The dUcompðJÞ terms are a generalisation of

the Simo and Pister (1984) proposal. The ð
Pr

n¼1 An � BnÞ ln J term has been included in dUcompðJÞ but one

could argue that it should be included in dUincomp since ð
Pr

n¼1 An � BnÞ ln J ¼ ð
Pr

n¼1 An � BnÞ
ðln kp1 þ ln kp2 þ ln kp3Þ which is the sum of three separate but identical functions of each of the individual

principal stretches.
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For the strain energy density to be a minimum at the undeformed state, the material constants must

satisfy the following:
o2 dU

ok2
pi

 !
undeformed state

¼
Xr
n¼1

2nðAn þ BnÞ þ C1 > 0 ð61Þ
If the material under consideration is Hookean at infinitesimal strain, the material constants are related to

the shear modulus G, bulk modulus K and the Lam�ee constant K by
G ¼
Xr
n¼1

nðAn þ BnÞ K ¼ C1

K ¼ C1 þ
2

3

Xr
n¼1

nðAn þ BnÞ
ð62Þ
Using Eqs. (52) and (60), general expressions for the principal physical Lagrangian and Eulerian stresses

can be derived.
sðiiÞp ¼
Xr
n¼1

An k2n�1
pi



� 1

kpi

�
� Bn k�2n�1

pi



� 1

kpi

�
þ J

kpi
pv

¼
Xr
n¼1

Ank
2n�1
pi � Bnk

�2n�1
pi þ J

kpi
pT

1ðiiÞp ¼ 1

J

Xr
n¼1

Anðk2n
pi � 1Þ � Bnðk�2n

pi � 1Þ þ pv

¼ 1

J

Xr
n¼1

Ank
2n
pi � Bnk

�2n
pi þ pT

ð63Þ
where pT is the total hydrostatic pressure component of the principal stresses defined by
pT ¼
Xs
n¼1

Cn

J
ðln JÞ2n�1 �

Xr
n¼1

An � Bn
J

¼ pv þ po ð64Þ
where po ¼ �
Pr

n¼1ðAn � BnÞ=J and pv ¼
Ps

n¼1ðCn=JÞðln JÞ2n�1
is the hydrostatic pressure associated with

volumetric dilation.

To demonstrate the applicability of the proposed strain energy density expression, several problems

involving incompressible and compressible materials will be discussed.
10. Incompressible isotropic hyperelastic material

An incompressible material such as rubber is isometric in that there is no change in volume during

deformation and the constraint J ¼ kp1kp2kp2 ¼ 1 is applied to the strain energy density. Any hydrostatic

pressure will do no work since the volume is constrained. The dUcomp component of the strain energy

density is therefore zero. Several strain energy density expressions have been proposed for rubber and some

of these are discussed in Treloar (1975), Ogden (1997), Boyce and Arruda (2000) and Bischoff et al. (2000).

A review of the research literature involving rubber will not be presented here. The experimental verifi-

cation of many of the proposed strain energy density expressions for incompressible materials are usually
based on experiments involving a state of pure homogeneous strain and include tests such as pure tension,

compression, equi-biaxial tension and pure shear. The datum set of test results referred to by many
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Fig. 6. Comparison with the experimental results of Treloar (1944).
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researchers are those of Treloar (1944). A four parameter strain energy density (Eq. (65)) based on Eq. (60)

is used here and applied to the problems under pure homogeneous strain as investigated by Treloar (1944).
dU ¼ 1
2
A1ðIk � 3Þ þ 1

4
A2ðL2 � 3Þ þ 1

6
A3ðL3 � 3Þ þ 1

2
B1ðL1 � 3ÞdV ð65Þ
The experimentally determined shear modulus G was quoted as 0.39 MPa. The material constant A1 was set

to 0.39 MPa and the other material parameters were then estimated using the test results. The material

constants which satisfy Eq. (61) so determined are:
A1 ¼ 0:39 MPa A2 ¼ �0:009615 MPa

A3 ¼ 0:0002818 MPa B1 ¼ 0:01267 MPa

G ¼ A1 þ 2A2 þ 3A3 þ B1 ¼ 0:384 MPa

o2 dU

ok2
pi

 !
undeformed state

¼ 2ðA1 þ B1Þ þ 4A2 þ 6A3 ¼ 0:7686 > 0
Fig. 6 shows a comparison of the test results and those obtained using Eq. (65) with the comparison being

good. A much better fit was obtained by Ogden (1997) but involved a six parameter model.
11. Compressible isotropic material under high hydrostatic pressure

To investigate the appropriateness of the proposed form for the compressibility component of the strain

energy density it is necessary to look at experiments carried out at very high hydrostatic pressures. In

hydrostatic compression tests performed by Adams and Gibson (1930) and Bridgman (1933, 1935, 1945)

results were achieved down to values of J of the order of 0.8 (see Ogden, 1997). A three parameter (A1 ¼ G,
C1 ¼ K and C2) strain energy density expression for compressible materials is considered here and detailed

in the following equation.



Table

Mater

Para

A1 ¼
K
C1 ¼
C2=
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dU ¼ 1
2
GðIk � 3Þ þ 1

2
Kðln JÞ2 þ 1

4
C2ðln JÞ4 � G ln J dV ð66Þ
Using Eq. (63), and assuming that under hydrostatic pressure kp1 ¼ kp2 ¼ kp3 ¼ J 1=3, the general form of the

hydrostatic pressure is then given by
p ¼ 1

J

Xr
n¼1

AnJ 2n=3 � BnJ�2n=3 þ pT ð67Þ
which reduces to the following form for the three parameter model considered here:
p ¼ GðJ�1=3 � J�1Þ þ K
J
ðln JÞ þ C2

J
ðln JÞ3 ð68Þ
Based on the experimental results for the compressibility of sodium and N -amyl iodide of Bridgman (1933,

1935), Rubber ‘‘A’’ of Adams and Gibson (1930) and Goodrich D-402 and Koroseal of Bridgman (1945),

material parameters were determined and are listed in Table 2. Figs. 7 and 8 show the comparison with the
experimental results again showing acceptable comparison.
12. Volume change under uniaxial tension

Penn (1970) measured the volume change of vulcanized natural gum rubber under uniaxial extension.

The stress versus stretch data showed the opposite curvature to that demonstrated by the volume change
versus stretch data (refer to Figs. 9 and 10). At stretches above 1.5 the ‘‘two curves deviate significantly
2

ial parameters

meter Sodium N -amyl iodide Rubber ‘‘A’’ Goodrich D-402 Koroseal

G 3.333 GPa 0 0 0 0

6.3 GPa 1.73 GPa 5.2 GPa 3.55 GPa 2.63 GPa

K 4.078 GPa 1.73 GPa 5.2 GPa 3.55 GPa 2.63 GPa

C1 11.12 15.87 44.43 48.02 48.02
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Fig. 7. Comparison with the experimental results of Bridgman (1933, 1935).
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when the volume change becomes concave downward while the stress curves upward’’. Penn (1970) argued

that because of this deviation the strain energy density could not be decomposed into the sum of an

incompressible and compressible component.

A four parameter strain energy density was used for this example and is listed below:
dU ¼ 1
2
A1ðIk � 3Þ þ 1

2
B1ðL1 � 3Þ þ 1

4
A2ðL2 � 1Þ þ 1

2
C1ðln JÞ2 � ðA1 þ A2 � B1Þ ln J dV ð69Þ
Eq. (69) was used to derive expressions for the Lagrangian physical normal and lateral stresses. The
parameter C1 was set to the bulk modulus estimated from Penn (1970) at 2000 MPa. Penn (1970) quoted

the Mooney constants as approximately 0.361 and 0.165. These correspond to parameters A1 and B1, res-

pectively. The A1 parameter was set at 0.361 and the remaining two parameters (A2 and B1) in the model of

Eq. (69) were estimated as
A1 ¼ 0:361 MPa B1 ¼ 0:22 MPa A2 ¼ 0:1 MPa C1 ¼ K ¼ 2000 MPa

G ¼ A1 þ B1 þ 2A2 ¼ 0:781 MPa
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Fig. 9. Comparison of the stretch versus uniaxial stress experimental data of Penn (1970) with proposed model.
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For a given value of the stretch, the invariant J was solved to give a zero lateral stress. The normal stress
was then calculated for the given stretch and estimated J . Figs. 9 and 10 show a comparison between the

model predictions and the experimental data of Penn (1970) showing excellent comparison.

Fig. 11 shows the longitudinal stretch versus the lateral stretch using the experimental example of Penn

(1970). The predictions of the model were obtained for stretch (compression) approaching 0 to demonstrate

that unrealistic results would not emerge (as can be ascertained from the form of the expression for the

lateral stress which is set to zero and solved for the lateral stretch).
13. Compressible isotropic Hookean material

A simple non-negative strain energy density for a compressible isotropic Hookean type material derived
from Eqs. (60) and (62) proposed here is
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dU ¼ 1
2
GðIk � 3Þ þ 1

2
Kðln JÞ2 � G ln J dV ð70Þ
where the material constants are defined by
G ¼ E
2ð1 þ lÞ K ¼ El

ð1 þ lÞð1 � 2lÞ ð71Þ
with E being the elastic modulus, G the shear modulus, l the Poisson�s ratio and K the Lam�ee constant. Eq.

(70) was originally proposed by Simo and Pister (1984) for compressible Hookean materials. To guarantee

that the strain energy density be positive for all deformations, the Poisson�s ratio must be less than 0.5 and

greater than )1. This is proved by noting that the stationary value of the strain energy density when the

stretches are constrained to be positive, is at the zero stress state with zero strain energy density. One can

then show that the stationary point is a minimum when 2Gþ K is positive and definite.

The constitutive law for the principal physical Lagrangian and Eulerian stresses derived from Eqs. (52)

and (70) are:
sðiiÞp ¼ G kpi



� 1

kpi

�
þ J

kpi
pv 1ðiiÞp ¼ G

J
ðk2

pi � 1Þ þ pv

sðiiÞp ¼ Gkpi þ
J
kpi

pv



� G
J

�
1ðiiÞp ¼

Gk2
pi

J
þ pv



� G
J

� ð72Þ
where pv is equal to K ln J=J . The stress versus stretch relationship is decomposed into two parts: the term
multiplied by the shear modulus is associated with volume constant distortion while the second term is a

hydrostatic pressure. Because of isotropy, volumetric dilation can only be caused by the application of a

hydrostatic pressure pv.
This form for the constitutive law has the advantage that all the terms are functions of the principal

stretches and their reciprocals which have some vector properties as they are associated with the length of the

covariant and contravariant tangent base vectors in the deformed state. Eq. (72) ensures that the principal

stresses are zero for an unstrained state when the principal stretches are all unity. If a material is compressed

such that the principal stretch in one direction approaches zero (a singularity), the associated principal stress
and the hydrostatic pressure pv both approach negative infinity. The constitutive law defined above reduces

to the linear elastic Hookean stress strain law used in engineering theory when the strains are very small.

A simple example of the application of Eq. (72) is the case of uniaxial tension or compression where we

assume kp2 ¼ kp3 and s22
p ¼ s33

p ¼ 0. From Eq. (72) we can write for the physical principal longitudinal stress

and stretch relationship the following involving one material constant.
pv ¼ �G
J
ðk2

p2 � 1Þ

s11
p ¼ G

kp1
ðk2

p1 � k2
p2Þ 111

p ¼ G
J
ðk2

p1 � k2
p2Þ

ð73Þ
14. Finite strain constitutive relationship

The constitutive law for a compressible isotropic Hookean material will now be derived in terms of the

metric tensor in the deformed state. Recall from Eq. (51), that for the stress tensors we have
pij ¼ sijJ ¼ 2
odU
oĝgij

Jrij ¼ 2Gi
mG

j
n

odU
oĝgmn

tij ¼ 2Gj
k

odU
oĝgik

ð74Þ
The strain energy density proposed in Eq. (70) is a function of the invariants Ik and J .
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To determine Eq. (74) we need the partial derivatives for these invariants with respect to the metric tensor

in the deformed state ĝgij. From the expressions for the invariants, Eqs. (24) and (26), we can write (see

Green and Zerna, 1968):
oIk
oĝgij

¼ gij
o lnJ
oĝgij

¼ 1

2
ĝgij ð75Þ
Using Eqs. (23), (70), (74), and (75), we therefore have for the Eulerian and the second Piola–Kirchhoff

stress tensor:
pij ¼ sijJ ¼ Gðgij � ĝgijÞ þ Kĝgij ln J ¼ 2G�ccij þ J ĝgijpv ¼ Ggij þ J ĝgij pv



� G
J

�
ð76Þ
where �ccij is the contravariant Almansi strain tensor. The constitutive law for the mixed second Piola–

Kirchhoff stress tensor and Eulerian stress tensor where stresses are aligned with the contravariant tangent

base vectors can be derived from Eq. (76), that is
pik ¼ sikJ ¼ pijĝgjk ¼ Ggijĝgjk þ Jdik pv



� G
J

�
ð77Þ
It is easy to see from Eq. (77) that ðpv � ðG=JÞÞ is a hydrostatic pressure which is normal to any surface in
the deformed configuration. The mean normal stress 1

3
pii and 1

3
sii and the deviatoric stresses 0pij and 0sij based

on Eq. (77) are therefore
1
3
pii ¼ 1

3
siiJ ¼ 1

3
GðIk � 3Þ þ Jpv

0pij ¼0 sijJ ¼ G gikĝgkj
�

� 1
3
dijIk
	 ð78Þ
The physical Lagrangian and Eulerian stresses based on Eq. (76) can be derived as
sij ¼ J1ij
ffiffiffiffiffiffiffi
ĝgðiiÞ

pffiffiffiffiffiffiffi
gðiiÞ

p ¼
ffiffiffiffiffiffiffiffi
ĝgðjjÞ

pffiffiffiffiffiffiffi
gðiiÞ

p ½2G�ccij þ J ĝgijpv� ð79Þ
Let us consider an initial Cartesian coordinate system and examine the normal and tangential physical

stress components of the physical stress vectors dTi (refer to Fig. 12). The physical Lagrangian stresses
normal to the surfaces of the deformed parallelepiped are given by
normalS

shearS
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Fig. 12. Deformed parallelepiped showing normal and shear stresses on surface bounded by ĝg2 dh2 and ĝg3 dh3.
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dTi � ĝgðiÞffiffiffiffiffiffiffi
ĝgðiiÞ

p ¼ pðiiÞffiffiffiffiffiffiffi
ĝgðiiÞ

p ¼ sðiiÞffiffiffiffiffiffiffi
ĝgðiiÞ

p ffiffiffiffiffiffiffi
ĝgðiiÞ

p ¼ G
1ffiffiffiffiffiffiffi
ĝgðiiÞ

p
0B@ �

ffiffiffiffiffiffiffi
ĝgðiiÞ

p 1CAþ J
ffiffiffiffiffiffiffi
ĝgðiiÞ

p
pv ¼ G kni



� 1

kni

�
þ J

kni
pv

¼ Gkni þ
J
kni

pv



� G
J

�
ð80Þ
where kni ¼ 1=
ffiffiffiffiffiffiffi
ĝgðiiÞ

p
is the normal component of the stretch ki (refer to Fig. 13).

The normal physical Lagrangian stress component is a function of the normal component of the stretch

kni and the volumetric invariant J . Eq. (80) is also true if the initial coordinates are general. Let us now

examine the physical Lagrangian shear components of the physical stress vectors that is
dTi �
ĝgðiÞ � ĝgðiÞ

ĝgðiiÞ

� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝgðiiÞ � 1

ĝgðiiÞ

q ¼
sijĝgjffiffiffiffiffiffiffiffi
ĝgðjjÞ

p �
ĝgðiÞ � ĝgðiÞ

ĝgðiiÞ

� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝgðiiÞ � 1

ĝgðiiÞ

q ¼ G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝgðiiÞ �

1

ĝgðiiÞ

s
¼ Gksi ð81Þ
where ksi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝgðiiÞ � ð1=ĝgðiiÞÞ

q
is the tangential component of stretch ki (refer to Fig. 13).

Unlike Eq. (80), Eq. (81) is only true if the initial coordinates are Cartesian. Importantly, the physical

shear stress orthogonal to the normal stress on any of the surfaces of the deformed parallelepiped is not a

function of the material constant ‘‘K’’ which relates to volumetric dilation. We can arrive at the same

equations for the normal and tangential components of the stress vector by looking at the strain energy

density which can be expressed in the following form:
dU ¼ 1
2
GðIk � 3Þ þ 1

2
Kðln JÞ2 � G ln J dV

¼ 1
2
Gð½k2

n1 þ k2
s1� þ k2

2 þ k2
3 � 3Þ þ 1

2
Kðlnfkn1½ĝg22ĝg33 � ĝg23ĝg23�

1=2gÞ2

� G lnðkn1½ĝg22ĝg33 � ĝg23ĝg23�
1=2ÞdV ð82Þ
where J=kn1 ¼ ½ĝg22ĝg33 � ĝg23ĝg23�
1=2

is the ratio of the surface area bound by ĝg2 dh2 and ĝg3 dh3 in the deformed

state to the initial state, kn1 ¼ 1=
ffiffiffiffiffiffi
ĝg11

p
and ks1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝg11 � ð1=ĝg11Þ

p
are the components of the stretch k1 normal

and tangential, respectively, to the surface area bounded by ĝg2 dh2 and ĝg3 dh3 as shown in Fig. 12. The shear
component is in the direction defined by the vector ĝg1 � ðĝg1=ĝg11Þ ¼ �ðĝg12=ĝg11Þĝg2 � ðĝg13=ĝg11Þĝg3. The normal

Snormal and shear Sshear physical Lagrangian stresses acting on the surface bound by ĝg2 dh2 and ĝg3 dh3, can be

obtained from the strain energy density, Eq. (82) and are:
g1

g2

g2

g1

λ θ1
1d

λ θs d1
1

λ θn d1
1

λ θ2
2d

λ θn2 d 2

λ θs d2
2

Fig. 13. Two-dimensional deformed parallelogram showing normal and shear components of stretch.
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Snormal ¼ odU
okn1

¼ G kn1



� 1

kn1

�
þ J

kn1
pv

Sshear ¼ odU
oks1

¼ Gks1

ð83Þ
agreeing with Eqs. (80) and (81). Fig. 14 shows a two-dimensional representation of the Lagrangian

physical stresses based on the proposed constitutive model for isotropic compressible materials.

By contrast, a Hookean constitutive relationship between Green�s strain tensor and the second Piola–
Kirchhoff stress tensor does not have this property. To demonstrate this, consider a Cartesian coordinate

system for simplicity. The Hookean constitutive relationship is given by
pij ¼ 2Gcij þ Kdijcmm ð84Þ
(see Wempner, 1981). The components of the projection of the stress vector onto the surface on which it

acts is represented by
dTi � ĝgkffiffiffiffiffiffiffiffi
ĝgðkkÞ

p ¼
pijĝgjkffiffiffiffiffiffiffiffi
ĝgðkkÞ

p ¼
2Gcijĝgjk þ Kcmmĝgikffiffiffiffiffiffiffiffi

ĝgðkkÞ
p ði 6¼ kÞ ð85Þ
We see that there is a term associated with the material constant ‘‘K’’. This is not correct as we saw earlier

for an isotropic material; the tangential components of the stress vector should not be a function of volu-

metric dilation.
The constitutive law for the first Piola–Kirchhoff stress tensor and the Cauchy stress tensor are derived

from Eqs. (34) and (76), and are expressed by
tij ¼ GðgirGj
r � ĝgi � gjÞ þ J ĝgi � gjpv

rij ¼ G
J
ðGi

mG
j
ng

mn � gijÞ þ gijpv
ð86Þ
When the initial coordinate system is Cartesian, the Cauchy stress system is orthogonal and the constitutive

law simplifies to
rij ¼ G
J
ðGi

mG
j
m � dijÞ þ dijpv ¼

G
J
Gi
mG

j
m þ dij pv



� G
J

�
ð87Þ
. 14. Two-dimensional deformed parallelogram showing distortion and hydrostatic Lagrangian physical stress components.
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15. Simple shear

It is instructive to look at simple shear as an example of the application of the constitutive law defined in

Eq. (70). Consider a bar under simple shear. Fig. 15 shows an element subjected to simple shear such that
the area remains constant during deformation (J ¼ 1). The stretch of the vertical face is unity while the

stretch of the inclined face is given by k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ D2

p
where D is the shear displacement. The position vector

in the deformed state can be written as
R̂R ¼ xi1 þ ðy þ DxÞi2 þ zi3 ð88Þ
where x, y, z are the coordinates of an initial Cartesian coordinate system. The base vectors in the deformed

state are therefore
ĝg1 ¼ i1 þ Di2 ĝg2 ¼ i2 ĝg3 ¼ i3

ĝg1 ¼ i1 ĝg2 ¼ �Di1 þ i2 ĝg3 ¼ i3
ð89Þ
giving rise to the following invariants:
Ik ¼ D2 þ 3 J ¼ 1 ð90Þ
The strain energy density for simple shear based on Eqs. (70) and (90) is therefore
dU ¼ 1
2
GD2 dV ð91Þ
The physical Lagrangian, Eulerian and Cauchy stresses based on the proposed constitutive law for an

isotropic Hookean material are therefore
s11 ¼ 0 111 ¼ 0 r11 ¼ 0

s12 ¼ GD 112 ¼ GD r12 ¼ GD

s22 ¼ �GD2 122 ¼ �GD2

k
r22 ¼ GD2

s21 ¼ GDk 121 ¼ GD r21 ¼ GD

ð92Þ
Fig. 16 shows the physical stresses acting on the deformed element under simple shear. We see that there is

no stress normal to the vertical face as the normal component of the stretch k and the volume both remain

unchanged during deformation. Ogden (1997, p. 227) also obtained zero stress/force normal to the vertical
∆

λ = +1 2∆

x

y

1

1

Fig. 15. Simple shear.



G∆

G∆

G∆λ

G∆λ

G∆2

G∆2

Lagrangian
Stresses

G∆

G∆

G∆

G∆

G∆2

λ

Eulerian
Stresses

G∆2

λ

G∆G∆

G∆2

Cauchy
Stresses

G∆2

G∆

G∆

Fig. 16. Simple shear––physical stresses.
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face for simple shear. If one uses a Hookean constitutive relationship between Green�s strain tensor and the

second Piola–Kirchhoff stress tensor as in Eq. (84) and the relationship between the physical Lagrangian
stress and its counterpart the second Piola–Kirchhoff stress tensor (sij ¼ pijkðjÞ), the following is obtained

for the physical Lagrangian stresses:
s11 ¼ 1
2
ð2Gþ KÞD2k s12 ¼ GD s22 ¼ KD2 s21 ¼ GDk ð93Þ
Stress s11 is not zero and will have a vector component aligned with the vertical face which is a function of

K. The shear component on the vertical face as argued through this paper should not be a related to the

Lam�ee constant K as this is associated with volumetric dilation due to hydrostatic pressure.

The deformation involved in pure torsion of a cylinder is essentially that of simple shear. As discussed in

an accompanying paper Attard (2003) many finite strain formulations predict an axial shortening

accompanied with a self-equilibrating normal stress of second order. It is shown that the proposed

Hookean constitutive relationship does not make that prediction.
16. Conclusions

An endeavour has been made to develop a general expression for the strain energy density for a isotropic
hyperelastic material. The strain energy density was decomposed into a incompressible and compressible
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components. The incompressibility component is the ‘‘general’’ Mooney (1940) expression for higher order

elasticity and satisfies the Valanis–Landel hypothesis. The compressibility component of the strain energy

density was shown to be a function of the volume invariant J only, and is the strain energy produced by the

application of a hydrostatic pressure. The compressibility component proposed is a generalisation of the
Simo and Pister (1984) formula for a neo-Hookean material. The compressibility component is associated

with volumetric dilation while the incompressibility component is associated with volume constant dis-

tortion. The compressibility component of the strain energy density leads to a hydrostatic pressure com-

ponent of the stress vector which must have no shear component on any surface of the material in any

configuration. By contrast, a Hookean constitutive relationship between Green�s strain tensor and the

second Piola–Kirchhoff stress tensor does not have this property. Comparison with experimental data for

the examples involving large deformations of rubber under homogeneous strain, compressible materials

under large hydrostatic pressure and measurements of volume changes under uniaxial tension, were good.
The constitutive relationships for a isotropic hyperelastic neo-Hookean material was also derived. The

constitutive law for the second Piola–Kirchhoff stress tensor and its physical counterpart are functions of

the contravariant Almansi strain tensor and the volumetric invariant J . The neo-Hookean constitutive law

for the principal physical Lagrangian and Eulerian stresses consisted of a stretch term and a hydrostatic

pressure term.
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